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Abstract—The objective of the present work is to develop a model 
for electrical discharge machining of RENE80 nickel super alloy and 
to optimize the process parameters using Artificial Neural Networks. 
The effect of various electrical parameters on the machining 
performances is investigated in this study. The input parameters 
considered are current, pulse on time; pulse off time and the output 
responses measured are Material Removal Rate (MRR) and Tool 
Wear Rate (TWR).The program is developed in MATLAB using 
Neural Networks by Back Propagation algorithm and the results are 
compared with the experimental data. It is observed from the studies 
that the results of the developed model are within close limits with 
that of the experimental results.  
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1. INTRODUCTION 

Electric Discharge machining (EDM) is a thermo-electric, 
non-traditional machining process used to machine precise and 
intricate shapes on difficult to cut materials and super tough 
metals such as ceramics, maraging steels, cast-alloys, titanium 
which are widely used in defence and aerospace industries. 
Electrical energy is used to generate electrical sparks and 
material removal mainly occurs due to localized melting and 
vaporization of material which is carried away by the 
dielectric fluid flow between the electrodes. The performance 
of this process is mainly influenced by many electrical 
parameters like, current, voltage, polarity, and pulse on time, 
pulse of time, electrode gap and also on non-electrical 
parameters like work and tool material, dielectric fluid 
pressure. All these electrical and non electrical parameters 
have a significant effect on the EDM output parameters like, 
metal removal rate (MRR), tool wear rate (TWR) and surface 
roughness. The EDM is very complex and stochastic process 
and is very difficult to determine the optimal machining 
parameters. In the present study the output responses MRR 
and TWR are conflicting in nature. MRR reflects the 
productivity and tool wear reflects the accuracy of the product. 
The objective of the study is to develop a model and to 
optimize the EDM process parameters for machining RENE80 

nickel super alloy using Artificial Neural Network (ANN). A 
program is developed in MATLAB using Back propagation 
algorithm and the validity of the model is ascertained with the 
experimental studies. 

2. LITERATURE REVIEW  

Researchers made attempts to model EDM process to study 
improvements in the performance measures. Gostimirovic and 
Kovac [1] experimentally investigated the effect of discharge 
current and pulse duration on MRR, TWR, spark gap and 
surface roughness. The experiments are conducted on 
manganese-vanadium tool steel using graphite electrode. 
Shankar and Pandey [2] investigated the EDM performance 
using different electrodes and the results showed that copper 
and aluminium electrodes offer high MRR, copper and 
copper-tungsten have comparatively low electrode wear and at 
high values of currents copper and aluminium offer low 
surface roughness. Janmanee and Jamkamon [3] studied the 
effect of copper and graphite electrodes on tungsten carbide 
and evaluated the optimum parameters.  Rahman [4] carried 
out work on EDM with various levels of input parameters for 
obtaining optimum machining parameters and the developed 
ANN model using Radial basis function was validated through 
experimental data. Reza Atef et.al., [5] analyzed the effect of 
machining parameters on the EWR while machining hot work 
steel DINI 2034 using copper electrode. ANN has been 
designed for prediction of EWR and a hybrid model is 
designed to reduce the error in ANN. Reza Atef et.al.,  [6] 
studied the influence of different EDM parameters on the 
surface quality, MRR and Electrode Wear Ratio(EWR). 
Design of experiments (DOE) and ANN has been used for 
modelling and evaluation of maximum and mean prediction 
error with different architectures network for selection of 
neurons with back propagation learning method. Assarzadeh 
and Ghoreishi [7] presented an efficient and integrated 
approach for MRR evaluation. A back propagation neural 
network model is trained and tested with experimental data. 
An Augmented Lagrange multiplier (ALM) net work was used 
to determine the optimum machining parameters for maximum 
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MRR in each machining regime of finishing, semi-finishing 
and roughing. Mandal and Surjay [8] developed an ANN with 
back propagation algorithm to model and genetic algorithm-II 
to optimize the material removal rate and EWR for C40 Steel 
using copper electrode. G Krishna Mohan Rao et. al., [9] 
addressed the EDM on Materials like Ti6Al4V, HE15, 
15CDV6 considering different input variables for optimization 
of MRR. A model was developed using neural network and 
selected the weights with help of genetic algorithm. Ramezan 
and Nevada [10] used non dominating sorting genetic 
algorithm-II to optimize the EDM performance measures. 
Conducted experiments on C40 Steel to generate input data for 
training and testing an ANN model and finally presented a 
pareto-optimal set as the output. Somashakar et.al. [11] used 
ANN to model micro-EDM process and Genetic Algorithms 
were used to determine optimum process parameters. Kuo-
Ming Tsai and Pei-Jen Wang [12] studied the comparisons on 
predictions of surface finish for various work materials with 
the change of electrode polarity on six different neural 
network models. 

3. EXPERIMENTAL DETAILS 

The experiments were conducted on V3525 precision die sink 
electric discharge machine as shown in Fig. 1 which consist a 
work table, a servo control system and a dielectric supply 
system. The machine has 8 current settings from 3A to 24A, 9 
settings of pulse on time, 9 settings of pulse off time and spark 
gap of 50-75 microns . The experiments are conducted on 
RENE80 Nickel Super alloy(Russian grade -RZ) and the work 
piece dimensions are 70 mm x 35 mm x 5 mm.  Work piece 
material properties are: Hardness (HRC)=43-45, density 
(g/cm3)=8.16, Ultimate tensile strength (Kg/mm2)=85, 
Elongation %=3, Creep strength (0C)=975. Thermal 
conductivity (W/m0K)=11.50. The tool material used is 
aluminium- density 2.70 gm/cm3 and thermal conductivity 237 
w/m0

 

k and the machining is done with straight polarity.  

Fig.  1: The Experimental equipment. 

EDM oil Grade 30 is used as the dielectric fluid and the 
experiments were performed for a particular set of input 
parameters. The number of experiments and, input levels are 
decided based on the design of experiments and the input 

parameters and their levels are presented in Table 1. The MRR 
and TWR are calculated using digital balance of accuracy 1mg 
and the machining time is using digital watch of accuracy 1 
microsecond and the surface roughness is measured using 
Taylor Hobson Talysurf machine for a sampling length of 
5mm. 

The MRR and TWR are calculated using the following 
expressions. 
MRR=1000×( Wb- Wa
TWR=1000×( T

) /t   mg/min 
b–Ta 

W
) /t     mg/min 

b 
W

: Weight of the work-piece before machining 
a 

T
: Weight of the work-piece after machining    

b 
T

: Weight of the tool before machining  
a  

t: Machining time (minutes) 
: Weight of the tool after machining   

 
Table 1: Input Parameters Levels  

Input 
parameters 

Current 
(amp) 

Pulse on time 
(µs) Pulse off  time (µs) 

Symbol A B C 
Level1 6 10 10 
Level2 15 20 20 
Level3 24 30 50 

4. ARTIFICIAL NEURAL NETWORK MODEL 

Neural network is logical structures with multi-processing 
elements which are connected through inter connection 
weights and these weights are adjusted during the learning 
phase. The task of neural network training in ANN is a 
complicated process in which a pattern set made up of pairs of 
input and expected outputs is known beforehand, and used to 
compute the set of weights that makes the ANN to learn it. 
The architecture of the network and the weights are evolved 
by using error back propagation. The optimization of weights 
improves the efficiency of ANN model. Back    propagation 
learning algorithm uses the gradient search technique to 
minimize the mean square error of output of the network [7]. 
The back propagation is a supervised learning technique 
which generally involves two phases through different layers 
of network, a forward phase and a backward phase in the 
forward phase the input vectors are presented and propagated 
forward to compute the output for each neuron. During this 
phase synaptic weights which are all randomly set to begin 
with are fixed and the mean square error (MSE) of all of the 
patterns in training set is calculated.  In back ward phase an 
iterative error reduction is performed in the back ward 
direction from the output layer to the input layer. The two 
phases are iterated until the weight factors stabilize their 
values and the mean square error is at a minimum or an 
acceptably small value [8].  

In this study, neural network architecture of three input 
parameters current, pulse on time and pulse off time and two 
output parameters MRR and TWR have been used to model 
the process. In present study the network supposed is 3-N-2, 
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which three neurons in input layer, N neurons in the hidden 
layer and two neuron in the output layer. The size of the 
hidden layer is one of the most important considerations when 
solving problems using multi-layer feed forward net work. For 
training the net work weights are updated online and the 
activation function of hidden and output neurons is selected as 
hyperbolic tangent. Experimental data have been used to train 
the network. The scale of the input and output data is an 
important content matter to consider especially in the 
operating ranges of process parameters are different. The 
scaling or normalizing ensures that the ANN will be trained 
effectively without any particular variable skewing the results 
significantly  as a result all the input parameters are equal 
important in the training of the neural network. The scaling is 
performed by mapping each term to a value between -1 and +1 
using the following linear mapping formula 

𝑁𝑁 = (𝑅𝑅−𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 )(𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 )
(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 )

+ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚         (1) 
 

Where  N=normalized value of the real variable 

R=real value of the variable 

Nmin=-1 and Nmax=+1, Rmin and Rmax are minimum and 
maximum values of the real variables [11].  

Sequential mode of training has been used for training the 
network for testing the prediction ability of the model, the 
prediction error in each output note has been calculated as 
follows 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 % = 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑚𝑚𝐴𝐴  𝑣𝑣𝑚𝑚𝐴𝐴𝐴𝐴𝑃𝑃 −𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚  𝑣𝑣𝑚𝑚𝐴𝐴𝐴𝐴𝑃𝑃
𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑚𝑚𝐴𝐴  𝑣𝑣𝑚𝑚𝐴𝐴𝐴𝐴𝑃𝑃

 𝑋𝑋 100  (2) 
 
During the training the connection between the nodes is 
initialized with random weights. A pattern from the training 
set is presented into the input layer of the network and the 
error at output is calculated. The error is propagated 
backwards towards the input layer and the weights are 
updated. The procedure repeated for all training patterns. The 
weights and threshold value are adjusted until the error value 
comes within the limit. The root mean square error value 
calculated, the process repeated until the root mean square 
error value is within the limit.  

Model prediction error and average mean square error are 
evaluated. The actual and predicated values from network for 
MRR and TWR have been calculated. The output at any 
neuron and for any layer can be calculated by equation 3 
[11].Finally the output of the network (Yi) was compared with 
the measured performance (Qi) of the process using simple 
mean square error (Ei) as shown in equation 4. [9]. 

𝑌𝑌𝑚𝑚 = 𝑓𝑓� wij

𝑚𝑚

𝑚𝑚=1
𝑚𝑚𝑚𝑚  + Θ j                     (3)   

Ei = �∑ (Yi − Qi)2𝑚𝑚
𝑚𝑚=1                    (4) 

 

where 

Yj=Final output from jth neuron 
𝑓𝑓=activation function 
n=number of neurons in previous layers 
wij=synaptic weights between ith and jth neuron 
xi=output from ith neuron  
Θ j=bias at jth

5. EXPERIMENTAL RESULTS AND DISCUSSION 

 neuron         

Based on L9 orthogonal array 9 experiments are conducted on 
RENE80 nickel super alloy with aluminium tool and EDM 
grade 30 oil as dielectric medium for different experiment 
levels which are show in Table.2. To achieve validity and 
accuracy each test is repeated three times. Particular attention 
was paid to ensure that the operating conditions permitted the 
effective flushing of machining debris from the working 
region. The experiments were performed with the bottom 
surface of the electrode flat and parallel to the work surface.        

Table 2: L9  

Expt. No 

Orthogonal Array 

A B C 
1 1 1 1 
2 1 2 2 
3 1 3 3 
4 2 1 2 
5 2 2 3 
6 2 3 1 
7 3 1 3 
8 3 2 1 
9 3 3 2 

 
The average value of the response measurements MRR and 
TWR were used as the output for each set of input parameters 
which are shown in Table3. 

6. INFLUENCE OF ELECTRICAL PARAMETERS ON 
RESPONSES 

In EDM the MRR, TWR and surface roughness depend on the 
spark energy crossing the discharge gap. The process outputs 
are function of the peak current, discharge voltage and pulse 
on time. The influence of the machining parameters on MRR, 
TWR are shown in Figs 2 and 3 respectively. 

6.1 Effect of Discharge Current 

The effect of discharge current on EDM characteristics is 
shown in Figs 2 and 3. The MRR is found to be increased with 
increase in the discharge current as the discharge energy 
supplied to remove the material is controlled by the discharge 
current. At low current (6 Amps), discharge energy is low and 
maximum amount of total discharge energy is used to heat the 
material therefore the MRR is low whereas at high currents  
(24 Amps) discharge energy is very high which causes 
vaporization and melting of the material quickly which results 
in high MRR. Also, at constant pulse frequency increasing 
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current increases the energy of pulse and ultimately  craters 
formed  are wider and deeper that results in more amount of 
material removal. The Tool wear   increased with increase in 
current due to more spark intensity and discharge power. 

6.3 Effect of Pulse on Time (Ton)  

The MRR initially decreased with increase in pulse on time 
and increased finally. This is because of short pulses which 
cause less vaporization, where as long pulse duration causes 
the plasma channel to expand. The expansion of plasma 
channel causes less energy density on the work piece, which is 
in sufficient to melt and/or vaporize the work piece material 
[11]. The pulse on time increases the TWR decreased. At 
higher voltages MRR and TWR is less due to the non flushing 
of debris which is trapped in the spark gap and not carried 
away by the dielectric fluid. 

6.2 Effect of Pulse off Time (Toff)   

The pulse off time increases both MRR and TWR increases. 
These effects are less compared to pulse on time. 

The Table 4 shows the experimental and predicted values for 
MRR and TWR as well as the percentage of relative errors. 
The maximum percentage of error in MRR is 8 and average 
error value is 7.44 and the maximum percentage of error in 
TWR is 6 and the average error value is 5.76. The results 
indicate that there is a good agreement between the neural 
network model predictions and the experimental results. The 
comparison between experimental and ANN output for MRR 
and TWR are shown in Fig.  4 and 5 respectively. For optimal 
MRR within the given experimental range, A3B1C3 levels 
must be selected as MRR is larger, where as for optimization 
of TWR, A1B3C1 levels must be selected as TWR is the 
smaller. 

 

Fig.  2: Effect of input parameters on MRR 

 
Fig.  3: Effect of input parameters on TWR 

Table 3: Experimental results of different trials 

Expt. 
No. 

MRR TWR 
T1 T2 T3 AVG T1 T2 T3 AVG 

1 21 17 18.5 18.8 6 4.5 4 4.83 
2 10 7 8.5 8.5 4.8 5.6 5.3 5.2 
3 6.5 5.5 16.5 9.5 2.6 3.4 4.3 3.4 
4 121 127 137 128.3 24.5 25.3 29 26.3 
5 76.5 73 113 87.5 13.33 11.5 19.3 14.71 
6 56.5 52 50 52.8 9 9.1 11 9.7 
7 250 255 256 253.6 49.33 50.67 45 48.3 
8 180 150 165 165 37.16 38 31.5 35.5 
9 222 210 205 212.3 34.6 35 32 33.8 

 
Table 4: Response values of MRR and TWR from the  

neural network 

MRR 
(Expt.) 

MRR 
(ANN) 

%Error 
in MRR 

TWR 
(Expt.) 

TWR(A
NN) 

%Error 
in TWR 

18.8 20.3 7.97 4.83 5.12 6 
8.5 9.10 7.05 5.2 5.51 5.98 
9.5 10.20 7.36 3.4 3.6 5.88 

128.3 138.56 7.99 26.3 27.80 6 
87.5 94.5 8 14.71 15.59 5.99 
52.8 56.02 6.09 9.7 10.28 5.97 

253.06 243.89 8.23 48.3 50.8 5.17 
165.00 176.2 6.6 35.50 37.60 5.9 
212.3 228.28 7.59 33.80 35.50 5 
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Fig. 4: Comparison of Experimental and ANN output for MRR 

 

Fig.  5: Comparison of Experimental and  
ANN output for TWR 

7. CONCLUSIONS 

The result shows that current, pulse on time and pulse off time 
have significant effect on MRR and TWR. The output of the 
developed model and the experimental results are in close 
agreement for both the output responses.   
 The MRR is increasing with increase in current.  
 MRR is decreasing initially with increase in the pulse on 

time and increasing later with an increase in pulse on 
time.  

 MRR is increasing with increase in the pulse off time but 
the increase is less as compared to pulse on time.  

 TWR is increasing linearly with increase in the current.  
 The TWR is decreasing with increase in pulse on time, 

when increase in pulse off time the TWR is increasing. 
 For optimum MRR, A3B1C3 levels must be selected and 

for optimum TWR, A1B3C1 levels must be selected.  
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